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T: lifetime (years)
p: exceedance probability
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Q,: Peak Discharge

Univariate

PF=1—(1—P)T

T: lifetime (years)
p: exceedance probability

Multivariate
(Moftakhari, et al., 2017, PNAS)

pp=1—P(X, €S, ..., Xp € SE)
T
=1— (Cx(Fl(fl)r Fz(fz)))
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For a given system/infrastructure
design lifetime of T the failure
probability (P;) is calculated as:

Univariate

prp=1-—(1- P)T
Multivariate

(Moftakhari, et al., 2017, PNAS)

pr=1-P(X, €S{,..,Xr € 5F)
T
= 1- (G(F G F(3)) )
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In the United States, there are at least 400 federal facilities identified as being at risk from rising sea
levels and compound coastal floods. The list includes thirteen executive agencies, including
Departments of Defense military bases.

Source: Bloomberg Law
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Typology of Compound Events
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Multivariate Copula Analysis Toolbox (MvCAT)
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Generalized Multi-Hazard Scenarios for Compound Extremes
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Environmental Risk Assessment and Non-stationarity
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Considering the N largest precipitation extremes in
an N-year record, under the assumption of
stationarity, we expect no significant trend (i.e., on
average one extreme per year). Analysis of 8,730
records shows evidence of change in the frequency
of extreme precipitation around the world.

AghaKouchak et al., 2020, Annu Rev Earth Planet Sci



Process-informed Nonstationaty Extreme Value Analysis (ProNEVA)
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Select an acceptable level of risk based on the end-user
requirements and equity concerns; then find the corresponding
design extremes based on plausible future climate scenarios
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Cascading Hazards
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Compound and Cascading Hazards
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Hot, dry weather lowers
overall moisture levels and
dries vegetation, leading to
outbreaks of extreme fires
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December 2017) Extreme precipitation
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deadly debris flows
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Snow-Temperature-Fire Dynamics




Mountain Snowpack Response to
Different Levels of Warming
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MORE FIRES, MORE SNOWMELT

Natural blazes in the western United States are (1) scorching larger areas
and (2) spreading to higher altitudes than they did in the 1980s.
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Natural blazes in the western United States are (1) scorching larger areas
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Final Remarks

lgnoring the compounding effects of
fluvial and ocean flooding leads to
underestimation of coastal flood risk.

Droughts have warmed faster than the
average climate in the southern and
northeastern U.S., affecting snow
drought and wildfires.

Current models developed for
compound events, often fail when used
for modeling cascading hazards.

We are exploring bottom-up learning
concepts for analysis of cascading
hazards, and methods for evaluating
infrastructure risk and performance in a
warming climate.
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